Numbers having $m$ small $m$th roots mod $p$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMBERS HAVING m SMALL rath ROOTS mod p

Here are two typical results about the numbers mentioned in the title: If p is a prime such that p = 1 (mod 6) and p > 67, then there are exactly six numbers mod p , each of which has six sixth roots less than 2yf}p in absolute value. If p is a prime such that p = 1 (mod 8), then there is at least one number mod p which has eight eighth roots less than p3/4 in absolute value.

متن کامل

Lower Bounds for (MOD p - MOD m) Circuits

Modular gates are known to be immune for the random restriction techniques of Ajtai Ajt83], Furst, Saxe, Sipser FSS84], Yao Yao85] and H astad H as86]. We demonstrate here a random clustering technique which overcomes this diiculty and is capable to prove generalizations of several known modular circuit lower bounds of Barrington, Straubing, Th erien BST90], Krause and Pudll ak KP94], and other...

متن کامل

On primitive roots of 1 mod p k, divisors of p ± 1, Wieferich primes, and quadratic analysis mod p 3

On primitive roots of 1 mod p k , divisors of p ± 1, Wieferich primes, and quadratic analysis mod p Abstract Primitive roots of 1 mod p k (k > 2 and odd prime p) are sought, in cyclic units group G k ≡ A k B k mod p k , coprime to p, of order (p − 1)p k−1. 'Core' subgroup A k has order p − 1 independent of precision k, and 'extension' subgroup B k of all p k−1 residues 1 mod p is generated by p...

متن کامل

M ar 2 00 1 On primitive roots of unity , divisors of p 2 − 1 , and an extension to mod p 3 of Fermat ’ s Small Theorem

On primitive roots of unity, divisors of p 2 − 1, and an extension to mod p Abstract Primitive roots of 1 mod p k (k > 2 and odd prime p) are sought, in cyclic units group G k ≡ A k B k mod p k , coprime to p, of order (p − 1)p k−1. 'Core' subgroup A k has order p − 1 independent of precision k, and 'extension' subgroup B k of all p k−1 residues 1 mod p is generated by p+1. Integer divisors of ...

متن کامل

Bounds for multiplicative cosets over fields of prime order

Let m be a positive integer and suppose that p is an odd prime with p ≡ 1 mod m. Suppose that a ∈ (Z/pZ)∗ and consider the polynomial xm − a. If this polynomial has any roots in (Z/pZ)∗, where the coset representatives for Z/pZ are taken to be all integers u with |u| < p/2, then these roots will form a coset of the multiplicative subgroup μm of (Z/pZ)∗ consisting of the mth roots of unity mod p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1993

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1993-1189522-0